1,708 research outputs found

    Effects of Predispersal Insect Seed Predation on the Early Life History Stages of a Rare Cold Sand-Desert Legume

    Get PDF
    Seed predation by insects is common in seeds of Fabaceae (legume) species with physical dormancy (PY). However, the consequences of insect seed predation on the life history of legumes with PY have been little studied. In the largest genus of seed plants, Astragalus (Fabaceae), only one study has tested the effects of insect predation on germination, and none has tested it directly on seedling survival. Thus, we tested the effects of insect predation on seed germination and seedling growth and survival of Astragalus lehmannianus, a central Asian sand-desert endemic. Under laboratory conditions, seeds lightly predated in the natural habitat of this perennial legume germinated to a much higher percentage than intact seeds, and seedlings from predated and nonpredated seeds survived and grew about equally well. Further, in contrast to our prediction seedlings from predated seeds that germinated “out-of-season” under near-natural conditions in NW China survived over winter. The implication of our results is that individual plants from predated seeds that germinate early (in our case autumn) potentially have a fitness advantage over those from nonpredated seeds, which delay germination until spring of a subsequent year

    Effects of Germination Season on Life History Traits and on Transgenerational Plasticity in Seed Dormancy in a Cold Desert Annual

    Get PDF
    The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- \u3e spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD

    Effect of Seed Position on Parental Plant on Proportion of Seeds Produced with Nondeep and Intermediate Physiological Dormancy

    Get PDF
    The position in which seeds develop on the parental plant can have an effect on dormancy-break and germination. We tested the hypothesis that the proportion of seeds with intermediate physiological dormancy (PD) produced in the proximal position on a raceme of Isatis violascens plants is higher than that produced in the distal position, and further that this difference is related to temperature during seed development. Plants were watered at 3-day intervals, and silicles and seeds from the proximal (early) and distal (late) positions of racemes on the same plants were collected separately and tested for germination. After 0 and 6 months dry storage at room temperature (afterripening), silicles and seeds were cold stratified for 0–16 weeks and tested for germination. Mean daily maximum and minimum temperatures during development/maturation of the two groups of seeds did not differ. A higher proportion of seeds with the intermediate level than with the nondeep level of PD was produced by silicles in the proximal position than by those in the distal position, while the proportion of seeds with nondeep PD was higher in the distal than in the proximal position of the raceme. The differences were not due only to seed mass. Since temperature and soil moisture conditions were the same during development of the seeds in the raceme, differences in proportion of seeds with intermediate and nondeep PD are attributed to position on parental plant. The ecological consequence of this phenomenon is that it ensures diversity in dormancy-breaking and germination characteristics within a seed cohort, a probable bet-hedging strategy. This is the first demonstration of position effects on level of PD in the offspring

    Seed Germination Ecology of the Cold Desert Annual \u3cem\u3eIsatis violascens\u3c/em\u3e (Brassicaceae): Two Levels of Physiological Dormancy and Role of the Pericarp

    Get PDF
    The occurrence of various species of Brassicaceae with indehiscent fruits in the cold deserts of NW China suggests that there are adaptive advantages of this trait. We hypothesized that the pericarp of the single-seeded silicles of Isatis violascens restricts embryo expansion and thus prevents germination for 1 or more years. Thus, our aim was to investigate the role of the pericarp in seed dormancy and germination of this species. The effects of afterripening, treatment with gibberellic acid (GA3) and cold stratification on seed dormancy-break were tested using intact silicles and isolated seeds, and germination phenology was monitored in an experimental garden. The pericarp has a role in mechanically inhibiting germination of fresh seeds and promotes germination of nondormant seeds, but it does not facilitate formation of a persistent seed bank. Seeds in silicles in watered soil began to germinate earlier in autumn and germinated to higher percentages than isolated seeds. Sixty-two percent of seeds in the buried silicles germinated by the end of the first spring, and only 3% remained nongerminated and viable. Twenty to twenty-five percent of the seeds have nondeep physiological dormancy (PD) and 75-80% intermediate PD. Seeds with nondeep PD afterripen in summer and germinate inside the silicles in autumn if the soil is moist. Afterripening during summer significantly decreased the amount of cold stratification required to break intermediate PD. The presence of both nondeep and intermediate PD in the seed cohort may be a bet-hedging strategy

    A toy model of fractal glioma development under RF electric field treatment

    Full text link
    A toy model for glioma treatment by a radio frequency electric field is suggested. This low-intensity, intermediate-frequency alternating electric field is known as the tumor-treating-field (TTF). In the framework of this model the efficiency of this TTF is estimated, and the interplay between the TTF and the migration-proliferation dichotomy of cancer cells is considered. The model is based on a modification of a comb model for cancer cells, where the migration-proliferation dichotomy becomes naturally apparent. Considering glioma cancer as a fractal dielectric composite of cancer cells and normal tissue cells, a new effective mechanism of glioma treatment is suggested in the form of a giant enhancement of the TTF. This leads to the irreversible electroporation that may be an effective non-invasive method of treating brain cancer.Comment: Submitted for publication in European Physical Journal

    Hole-hole interaction in a strained Inx_xGa1x_{1-x}As two dimensional system

    Full text link
    The interaction correction to the conductivity of 2D hole gas in strained GaAs/Inx_xGa1x_{1-x}As/GaAs quantum well structures was studied. It is shown that the Zeeman splitting, spin relaxation and ballistic contribution should be taking into account for reliable determination of the Fermi-liquid constant F0σF_0^\sigma. The proper consideration of these effects allows us to describe both th temperature and magnetic field dependences of the conductivity and find the value of F0σF_0^\sigma.Comment: 7 pages, 6 figure

    Identification of a cellulose synthase-associated protein required for cellulose biosynthesis

    Get PDF
    Cellulose synthase-interactive protein 1 (CSI1) was identified in a two-hybrid screen for proteins that interact with cellulose synthase (CESA) isoforms involved in primary plant cell wall synthesis. CSI1 encodes a 2,150-amino acid protein that contains 10 predicted Armadillo repeats and a C2 domain. Mutations in CSI1 cause defective cell elongation in hypocotyls and roots and reduce cellulose content. CSI1 is associated with CESA complexes, and csi1 mutants affect the distribution and movement of CESA complexes in the plasma membrane

    Time-Translation Invariance of Scattering Maps and Blue-Shift Instabilities on Kerr Black Hole Spacetimes

    Full text link
    In this paper, we provide an elementary, unified treatment of two distinct blue-shift instabilities for the scalar wave equation on a fixed Kerr black hole background: the celebrated blue-shift at the Cauchy horizon (familiar from the strong cosmic censorship conjecture) and the time-reversed red-shift at the event horizon (relevant in classical scattering theory). Our first theorem concerns the latter and constructs solutions to the wave equation on Kerr spacetimes such that the radiation field along the future event horizon vanishes and the radiation field along future null infinity decays at an arbitrarily fast polynomial rate, yet, the local energy of the solution is infinite near any point on the future event horizon. Our second theorem constructs solutions to the wave equation on rotating Kerr spacetimes such that the radiation field along the past event horizon (extended into the black hole) vanishes and the radiation field along past null infinity decays at an arbitrarily fast polynomial rate, yet, the local energy of the solution is infinite near any point on the Cauchy horizon. The results make essential use of the scattering theory developed in [M. Dafermos, I. Rodnianski and Y. Shlapentokh-Rothman, A scattering theory for the wave equation on Kerr black hole exteriors, preprint (2014) available at \url{http://arxiv.org/abs/1412.8379}] and exploit directly the time-translation invariance of the scattering map and the non-triviality of the transmission map.Comment: 26 pages, 12 figure

    Excitonic effects on the two-color coherent control of interband transitions in bulk semiconductors

    Full text link
    Quantum interference between one- and two-photon absorption pathways allows coherent control of interband transitions in unbiased bulk semiconductors; carrier population, carrier spin polarization, photocurrent injection, and spin current injection may all be controlled. We extend the theory of these processes to include the electron-hole interaction. Our focus is on photon energies that excite carriers above the band edge, but close enough to it so that transition amplitudes based on low order expansions in k\mathbf{k} are applicable; both allowed-allowed and allowed-forbidden two-photon transition amplitudes are included. Analytic solutions are obtained using the effective mass theory of Wannier excitons; degenerate bands are accounted for, but envelope-hole coupling is neglected. We find a Coulomb enhancement of two-color coherent control process, and relate it to the Coulomb enhancements of one- and two-photon absorption. In addition, we find a frequency dependent phase shift in the dependence of photocurrent and spin current on the optical phases. The phase shift decreases monotonically from π/2\pi /2 at the band edge to 0 over an energy range governed by the exciton binding energy. It is the difference between the partial wave phase shifts of the electron-hole envelope function reached by one- and two-photon pathways.Comment: 31 pages, 4 figures, to be published in Phys. Rev.
    corecore